Piecewise-linear transformation-based HMM adaptation for noisy speech
نویسندگان
چکیده
منابع مشابه
Piecewise-linear transformation-based HMM adaptation for noisy speech
This paper proposes a new method using piecewise-linear transformation for adapting phone HMMs to noisy speech. Various noises are clustered according to their acoustical property and signal-to-noise ratios (SNRs), and noisy speech HMM corresponding to each clustered noise is made. Based on the likelihood maximization criterion, the HMM which best matches an input speech is selected and further...
متن کاملNeural-network-based HMM adaptation for noisy speech
This paper proposes a new method, using neural networks, of adapting phone HMMs to noisy speech. The neural networks are designed to map clean speech HMMs to noise-adapted HMMs, using noise HMMs and signal-to-noise ratios (SNRs) as inputs, and are trained to minimize the mean square error between the output HMMs and the target noise-adapted HMMs. In evaluation, the proposed method was used to r...
متن کاملTree-structured noise-adapted HMM modeling for piecewise linear-transformation-based adaptation
This paper proposes the application of tree-structured clustering to various noise samples or noisy speech in the framework of piecewise-linear transformation (PLT)-based noise adaptation. According to the clustering results, a noisy speech HMM is made for each node of the tree structure. Based on the likelihood maximization criterion, the HMM that best matches the input speech is selected by t...
متن کاملHMM adaptation using vector taylor series for noisy speech recognition
In this paper we address the problem of robustness of speech recognition systems in noisy environments. The goal is to estimate the parameters of a HMM that is matched to a noisy environment, given a HMM trained with clean speech and knowledge of the acoustical environment. We propose a method based on truncated vector Taylor series that approximates the performance of a system trained with tha...
متن کاملUnsupervised adaptation for HMM-based speech synthesis
It is now possible to synthesise speech using HMMswith a comparable quality to unit-selection techniques. Generating speech from a model has many potential advantages over concatenating waveforms. The most exciting is model adaptation. It has been shown that supervised speaker adaptation can yield highquality synthetic voices with an order of magnitude less data than required to train a speaker...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Speech Communication
سال: 2004
ISSN: 0167-6393
DOI: 10.1016/j.specom.2003.08.006